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Introduction

Machine Learning

Over the past decade ML techniques have become an
essential tool for Natural Language Processing
Goals of this lecture:
• Cover the basics of ML
• Present a selection of widely used algorithms
• Illustrate ML in NLP tasks (WEKA)
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Part I

MACHINE LEARNING
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Background

Ever since computers were invented, we have
wondered whether they might be made to learn.
Imagine
• computers learning from medical records which

treatments are most effective for new diseases
• houses learning from experience to optimize

energy costs based on the particular usage
patterns of their occupants

• personal software assistants learning the
evolving interests of their users in order to
highlight especially relevant articles from the
online morning newspaper
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Machine learning

The field of machine learning is concerned with the
question of how to construct computer programs that
automatically improve with experience.
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Machine learning

A computer program is said to learn from experience
E with respect to some class of tasks T and perfor-
mance measure P, if its performance at tasks in T , as
measured by P, improves with experience E .

A checkers learning problem:
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What can we expect from machine
learning?

We do not yet know how to make computers learn
nearly as well as people learn.
But:
• ASR: algorithms based on machine learning

outperform all other approaches
• Data mining: successful application of ML to

discover knowledge from databases to detect
credit card fraud detection, purchase patterns,
etc.

•
https://www.youtube.com/watch?v=WFR3lOm xhE
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Machine learning in NLP
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The move to machine learning

Acquisition
OLD: Construct a rule-based model about the domain
vs.
NEW: Induce a stochastic model from a corpus of ex-
amples

Processing

OLD: Use rule-based reasoning, deduction, on these
models to solve new problems in the domain
vs.
NEW: Use statistical inference (generalization) from
the stochastic model to solve new problems in the do-
main
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Advantages

Deductive
• Linguistic knowledge and intuition can be used
• Precision

Inductive
• Fast development of model
• Good coverage
• Knowledge-poor
• Scalable / Applicable
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Problems

Deductive
• Representation of sub/irregularity
• Cost and time of model development

Inductive
• Sparse data
• Estimation of relevance statistical events
• Understandability
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Induction in Machine Learning

= the inference from observations to given general
rules.
In supervised machine learning, we have a set of data
points or observations for which we know the desired
output, class, target variable or outcome. In
unsupervised learning, we are trying to identify the
patterns inherent in the data that separate like
observations in one way or another.
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Supervised Machine Learning

• Very popular in NLP applications
• A supervised learner has access to a teacher

which describes the function to be learned over a
number of training examples, in practice an
annotated data set (corpus, etc)

• Supervised learning methods are usually
employed in learning of classification tasks

• Some notation:
D = d1, ..., d |D|: a set of data instances.
C = c1, ..., c|C|: a set of categories with respect

to which instances will be classified.
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Supervised Machine Learning
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Supervised Machine Learning
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Supervised Machine Learning
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Supervised Machine Learning
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Learners

Once the data is converted into feature vector format,
any supervised learning algorithm can be applied, e.g.

• Support Vector Machines
• Nearest Neighbor Classifiers
• Decision Trees
• Decision Lists
• Naı̈ve Bayesian Classifiers
• Neural Networks
• Log Linear Models
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The importance of algorithm bias

A learner that makes no a priori assumptions
regarding the identity of the target concept
has no rational basis for classifying any
unseen instance.(Mitchell)

Prior assumptions = inductive bias
the policy by which the learner generalizes beyond
the observed training data, to infer the classification of
new instances

E.g. decision tree learners favor compact decision
trees
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Learners

• Lazy leaners:
Keep all training instances in memory during
training;
At classification time, there is the extrapolation of
a class from the most similar items in memory to
the new test item
No abstraction is made from the data

• Eager leaners:
The training material is compressed by extracting
a limited number of rules;
At classification time, these rules are applied to
the test instances
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No free lunch

No free lunch theorem (Wolpert and Macready 95)
= no inductive algorithm is universally better than any
other

• In order to know which algoritmm fits a certain
NLP task the best: experiment

• Usefulness of NLP (e.g. SemEval) competitions:
comparison of different methodologies on the
same data sets
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Memory-based learning

• Background: performance in real-world tasks is
based on remembering past events rather than
creating rules or generalizations

• Lazy (vs. eager) : MBL keeps all training data in
memory and only abstracts at classification time
by extrapolating a class from the most similar
items in memory to the new test item
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Memory-based learning

1 memory-based learning component
During learning, the learning component adds
new training instances to the memory without any
abstraction or restructuring

2 similarity-based performance component
The classification of the most similar instance in
memory is taken as classification for the new test
instance
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Memory-based learning

Given
(x1, y1) (x2, y2) (x3, y3) ... (xn, yn)

Example
P-2 P-1 P+1 P+2 fish check river interest SENSE
S1 det prep det Y N Y N SHORE
S2 det verb det N Y N Y FINANCE

Task at classification time is to find the closest xi for a
new data point xq.
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Memory-based learning

Crucial components
• A distance metric
• The number of nearest neighbours to look at
• A strategy of how to extrapolate from the nearest

neighbours

Veronique Hoste (LT3) Machine Learning Göttingen, 22 August 2014 25 / 94



MBL: distance metric

• When presenting a new instance for classification
to the MBL learner, it looks in memory to find all
instances whose input attributes are similar to the
newly presented test instance.

• Need for a distance metric that defines how far xq
and xi are

• e.g. Overlap metric

∆(xq, xi) =
n∑

i=1

δ(xqi , xii)

where:
δ(xqi , xii) = 0 if xqi = xii

δ(xqi , xii) = 1 if xqi 6= xii

=> number of matching and mismatching feature
values in 2 instances (all feats. equally important)
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MBL: distance metric (ctd.)

• Some features will be more informative for the
prediction of the class label than others

• Some type of feature selection or feature
weighting is required.

• e.g. Weighing each feature by information gain:
a number expressing the average entropy
reduction a feature represents when its value is
known (Quinlan 93).
Calculate the database information entropy:

H(C) = −
∑
c∈C

P(c)log2P(c)

Calculate the information gain of feature i :

wi = H(C)−
∑
v∈Vi

P(v)× H(C|v)
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MBL: the nearest neighbours

• Nearest neighbours: instances in memory which
are near to the test item to be classified

• The classification of these nearest neighbours is
used as classification for the new test instance

• Number of nearest neighbours is expressed by k
• In case of symbolic features: often nearest

neighbours that have the same distance
=> k = number of nearest distances
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MBL: model of how to extrapolate from
the nearest neighbours

• majority voting: all nearest neighbours receive
equal weight; most frequent class in the nearest
neighbour set is taken as classification for the
new test item

• distance weighted voting: link the choice of
classification to the distance between the nearest
neighbours and the new test item
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Support vector machines

• Support Vector Machines (SVMs) learn a (linear)
hyperplane separating 2 categories of training
instances, in which the margin (distance between
the hyperplane and the closest data point) is
maximised.

• The category of new data points is predicted on
the basis of the side of the hyperplane where the
data points are located.

• Example: SVMlight (Joachims 1998)
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Decision Tree

• A decision tree is induced from a set of exampels.
It is a special kind of tree structure which
represents the alternatives and choices in the
decision process.

• Important decision tree learners: ID3- and
C4.5-(C5.0) algorithms

• Example: “Game won or lost?”
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Decision Tree: “Game won or lost?”
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Decision Tree: “Game won or lost?”

Veronique Hoste (LT3) Machine Learning Göttingen, 22 August 2014 33 / 94



Classifier ensembles

Intuition

• Combine the predictions of the individual
classifiers by using a “voting” mechanism.

• An ideal ensemble consists of highly correct
classifiers that disagree as much as possible.
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Unsupervised Learning

• algorithm discovers on its own some kind of
structure in the training data

• no (manually) labeled examples
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Clustering

Definition
Clustering is the organisation of a collection of
patterns (usually represented as a vector of
measurements, or a point in a multidimensional
space) into clusters based on similarity. Intuitively,
patterns within a valid cluster are more similar to each
other than they are to a pattern belonging to a
different cluster (Jain et al. 99)
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Clustering ctd.

• try to find a structure in labeled data
• group objects in homogeneous clusters or groups

of which the members are similar to each other
and dissimilar to the members of other clusters.
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Part II

WEKA

Veronique Hoste (LT3) Machine Learning Göttingen, 22 August 2014 38 / 94



Weka

• set of machine learning algorithms for data
mining tasks

• tools for data preprocessing, classification,
regression, clustering and visualisation
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Weka

Reading material:
• http://www.cs.waikato.ac.nz/ml/weka/
• Manual:

http://transact.dl.sourceforge.net/sourceforge/weka/
WekaManual-3.6.0.pdf
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Weka: arff files

• Weka file format: arff
• consists of a header which contains the list of

features + a data section (feature values
separated by a comma)

• Features:
• Nominal: predefined list of values (e.g red, green,

blue)
• Numeric: number
• String (between quotation marks)
• Date
• Relational
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Weka: arff files
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Weka Explorer

• Preprocess
• Classify
• Cluster
• Associate
• Select attributes
• Visualize
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Explorer: Preprocess

• Load Data
• Preprocess Data
• Analyse Attributes
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Weka Explorer: Preprocess
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Classify

• Select test options (use training set, cross
validation, etc.)

• Choose classifier
• Run classifier
• View results
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Clustering

• load “iris.arff” data set
• visualize attributes + classes
• cluster algorithm: simpleKMeans
• change the number of output clusters to 3 (click

the clustering command)
• how many instances are incorrectly clustered?
• now try out 2 supervised learners: ZeroR and J48

and comment on the output
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iris.arff
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iris.arff
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iris.arff
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iris.arff
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iris.arff
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Evaluation
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Evaluation
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Evaluation
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Evaluation(ctd.): example

Pred. as suicidal Pred. as not suicidal
Suicidal 65 (TP) 12 (FN)

Not suicidal 42 (FP) 137 (TN)
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Part III

Our machine learning problem: Word
Sense Disambiguation
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How to build a NLP system??

1 Step 1: collect data for your NLP problem to be
solved

2 Step 2: annotate
3 Step 3: build feature vectors
4 Step 4: choose appropriate ML algorithm
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Collect data for your NLP problem to be
solved

• depends on your research question
• how large?
• genre-balanced?
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Collect data for your NLP problem to be
solved
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How to build a NLP system??

1 Step 1: collect data for your NLP problem to be
solved

2 Step 2: annotate
3 Step 3: build feature vectors
4 Step 4: choose appropriate ML algorithm
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Step 2: annotate

Background
Modern (i.e., statistical) computational linguistics
suffers from the need for more annotated data.
Creating 1M > annotated corpora a major undertaking

2 possible ways to proceed:

• expert annotation: guidelines, expensive, slow,
high quality

• crowdsourcing: no guidelines, cheap, fast, noise
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Step 2: annotate

Efforts such as Wikipedia indicate that many Web
surfers may be willing to participate in collective
resource-producing efforts.
E.g.
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Step 2: annotate
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Step 2: annotate
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Step 2: e.g. Sense tagged text

• SemCor [Miller et al. 1993]: 352 texts tagged with
approximately 234,000 senses

• DSO corpus [Ng and Lee 1996]: 192,800
sense-tagged tokens of 191 words from the
Brown and WSJ corpora

• Open Mind Word Expert corpus [Chklovski and
Mihalcea 2002], 288 nouns semantically
annotated by crowdsourcers

• de Senseval / Semeval data sets
⇒ annotated with different version of WordNet

• others: MultiSemCor [Pianta et al. 2002], Interest
corpus [Bruce and Wiebe 1994]
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Step 2: e.g. Sense tagged text

Example
Bonnie and Clyde are two really famous criminals, I
think they were bank/1 robbers.
My bank/1 charges too much for an overdraft.
I went to the bank/1 to deposit my check and get a
new ATM card.
The University of Minnesota has an East and a West
Bank/2 campus right on the Mississippi River.
My grandfather planted his pole in the bank/2 and got
a great big catfish!
The bank/2 is pretty muddy, I can’t walk there.
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Step 2: e.g. Sense tagged text (ctd.)

<instance id=”art.40001” docsrc=”bnc ACN 245”>
<answer instance=”art.40001” senseid=”art%1:06:00::”>
<context>
From their residency at the Fridge during the first summer
of love, Halo used slide and film projectors to throw up a
collage of op-art patterns, film loops of dancers like E-Boy
and Wumni, and unique fractals derived from video
feedback. “We’re not aware of creating a visual identify for
the house scene, because we’re right in there. We see a
dancer at a rave, film him later that week, and project him
at the next rave.”
Halo can be contacted on 071 738 3248.
<head>Art<head>you can dance to from the creative
group called Halo
<context>
<instance>
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Step 2: e.g. Sense tagged text (ctd.)
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Step 2: e.g. Sense tagged text (ctd.)
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How to build a NLP system??

1 Step 1: collect data for your NLP problem to be
solved

2 Step 2: annotate
3 Step 3: build feature vectors
4 Step 4: choose appropriate ML algorithm

Veronique Hoste (LT3) Machine Learning Göttingen, 22 August 2014 72 / 94



Step 3: Bag-of-words

Example
Bonnie and Clyde are two really famous criminals, I
think they were bank/1 robbers.
My bank/1 charges too much for an overdraft.
I went to the bank/1 to deposit my check and get a
new ATM card.
The University of Minnesota has an East and a West
Bank/2 campus right on the Mississippi River.
My grandfather planted his pole in the bank/2 and got
a great big catfish!
The bank/2 is pretty muddy, I can’t walk there.
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Step 3: Bag-of-words

FINANCIAL BANK BAG
a an and are ATM Bonnie card charges check Clyde
criminals deposit famous for get I much My new
overdraft really robbers the they think to too two went
were

RIVER BANK BAG
a an and big campus cant catfish East got grandfather
great has his I in is Minnesota Mississippi muddy My
of on planted pole pretty right River The the there
University walk West
Or: filter by using PoS tagging, terminology extraction,
NER, etc.
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Step 3: Bag-of-words

FINANCIAL BANK BAG
ATM Bonnie card charges check Clyde criminals
deposit famous get new overdraft really robbers think
went were

RIVER BANK BAG
big campus cant catfish East got grandfather great
has is Minnesota Mississippi muddy planted pole
pretty right River University walk West
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Step 3: A simple supervised system

Given a sentence S containing the word “bank”:

For each word Wi in S
If Wi is in FINANCIAL BANK BAG then
Sense 1 = Sense 1 + 1;

If Wi is in RIVER BANK BAG then
Sense 2 = Sense 2 + 1;

If Sense 1 > Sense 2 then print “Financial”
else if Sense 2 > Sense 1 then print

“River”
else print “Can’t Decide”;
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Step 3: More features

Preprocessing of the input tekst:
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Step 3: More features

The result of the preprocessing is converted into
features (pieces of encoded information), e.g. :

• local features, refer to the local context of the
target word (e.g. POS, lemma, etc.)

• topical features, refer to the general topic of a text
(= broader context, e.g. sentence, paragraph,
etc.), usually represented as a BoW

• syntactic features, syntactic information on the
target word and other words in the sentence

• semantic features: e.g. domain information, etc.
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Learner ingredients: a simple example

It is no longer the locomotive it once was, it is now the
last coach in the train.

(a) Features focus word: coach coach NN I-NP
(b) Features context word -3: now now RB I-ADVP
(c) Features context word -2: the the DT I-NP
(d) Features context word -1: last last JJ I-NP
(e) Features context word +1: in in IN I-PP
(f) Features context word +2: the the DT I-NP
(g) Features context word +3: train train NN I-NP
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Learner ingredients: another simple
example (ctd.)

It is no longer the locomotive it once was, it is now the
last coach in the train.
In our training corpus:

He always rode the coach to work.
A coach was used to transport children to or from
school.
It was a passenger coach with an electric motor that
draws power from overhead wires.
The coach was pulled by four horses.
Two coaches were in charge of training the athletes.
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Learner ingredients: another simple
example (ctd.)

It is no longer the locomotive it once was, it is now the
last coach in the train.
In our training corpus: select informative keywords
based on PoS

He always rode the coach to work.
A coach was used to transport children to or from
school.
The coach was a passenger bus with an electric motor
that draws power from overhead wires.
The coach was pulled by four horses.
Two coaches were in charge of training the athletes.
The locomotive of the train broke down, but one of the
coaches was used to replace it.

0000000000000000011
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Learner ingredients: another simple
example (ctd.)

He always rode the coach to work.
A coach was used to transport children to or from
school.
The coach was a passenger bus with an electric motor
that draws power from overhead wires.
The coach was pulled by four horses.
Two coaches were in charge of training the athletes.
The locomotive of the train broke down, but one of the
coaches was used to replace it.

In a real-world setting, BoW vectors are huge. But
maybe some words are less informative and should
be filtered out?
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Learner ingredients: another simple
example (ctd.)

Filtering out uninformative words
• Different possible metrics: TF IDF, Log likelihood,

etc. For multiword terms: mutual expectation, etc.
• Termhood (Drouin 2006): degree to which a

linguistic unit is related to domain-specific context
• Unithood: degree of strength or stability of

syntagmatic combinations or collocations,
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Learner ingredients: another simple
example (ctd.)

Log likelihood
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Learner ingredients: another simple
example (ctd.)

Log likelihood
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Learner ingredients: adding semantic
information

very sparse lexical feature vectors: only a small
amount of the lexical features has a positive value per
instance

only exact lexical overlap is taken into account, no
overlap between synonyms
a possible solution: LSA
Latent Semantic Analysis (Landauer and Dumais
1997, Landauer, Foltz and Laham 1998) starts from
the distributional hypothesis that words that are close
in meaning will occur in similar contexts.
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Learner ingredients: adding semantic
information

• hypothesis: words that are close in meaning
occur in similar contexts

• LSA: uses Singular Value Decomposition (SVD),
a mathematical technique, to:

• reduce the dimensionality of the feature vectors
by keeping the most relevant information →
non-informative features are removed

• capture latent and higher order associations
between terms → capable of finding hidden
associations between synonyms of different
instances
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Learner ingredients: adding semantic
information

• example:
1 English: I should also like to add that these two texts focus, in particular, on

strengthening the framework of criminal law in order to fight organised rings of
facilitators.

Dutch: Ter verduidelijking wil ik er nog aan toevoegen dat het er in deze twee
teksten voornamelijk om gaat het strafrechtelijk kader te versterken om te kunnen
optreden tegen netwerken voor mensensmokkel.

2 English: That figure has now risen to 800000, and the well-organised criminal
slave trading rings for that is what I call them do not shrink from trafficking in
children as well.

Dutch: Dit aantal is nu gestegen naar 800.000, en de goed georganiseerde
criminele organisaties van slavenhandelaars, zoals ik deze lieden graag wil
noemen, deinzen er niet voor terug om ook kinderen te verhandelen.

3 English: It is mainly due to the lack of information among sportsmen and women,
and the report therefore proposes that there should be an indicator on the boxes of
pharmaceutical products, consisting of five Olympic rings and a traffic light.

Dutch: Deze is hoofdzakelijk het gevolg van een gebrekkige voorlichting aan de
sportlieden. In het verslag wordt dan ook voorgesteld om de farmaceutische
producten te voorzien van een duidelijk etiket met vijf Olympische ringen en een
verkeerslicht.

Veronique Hoste (LT3) Machine Learning Göttingen, 22 August 2014 88 / 94



Example LSA

• consider the two most important dimensions that
result from the SVD reduction on the three
example sentences

• the first two sentences are much more correlated
than the third sentence, which is characterized by
very different values → SVD is indeed capable of
finding correlations between terms that are
semantically close and collapses them into the
same dimension in the new representation.

Sentence 1 Sentence 2 Sentence 3
dim1 1.321 1.233 3.243
dim2 -0.507 -0.861 1.295
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Gensim
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How to build a NLP system??

1 Step 1: collect data for your NLP problem to be
solved

2 Step 2: annotate
3 Step 3: build feature vectors
4 Step 4: choose appropriate ML algorithm and

evaluate
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Evaluation

• Training data to learn and validate the learning
algorithm

• Test data
• (sometimes) Development data

Veronique Hoste (LT3) Machine Learning Göttingen, 22 August 2014 92 / 94



Evaluation (ctd.)

n-fold cross-validation
• separate the training data in n parts
• repeat n times: take every part once as test part

and the other n-1 parts as training part
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WSD data set

• load “coach.arff” data set from
http://www.lt3.ugent.be/semeval/coach/

• run classification with memory based learning
(lazy/IB1)

• run clustering with simpleKMeans
• inspect the errors; discuss.
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